matrix representation of a sixth order sturm-liouville problem and related inverse problem with finite spectrum
نویسندگان
چکیده
in this paper, we find matrix representation of a class of sixth order sturm-liouville problem (slp) with separated, self-adjoint boundary conditions and we show that such slp have finite spectrum. also for a given matrix eigenvalue problem $hx=lambda vx$, where $h$ is a block tridiagonal matrix and $v$ is a block diagonal matrix, we find a sixth order boundary value problem of atkinson type that is equivalent to matrix eigenvalue problem.
منابع مشابه
Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
متن کاملinverse sturm-liouville problem with discontinuity conditions
this paper deals with the boundary value problem involving the differential equationbegin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0),end{equation*}where $q(x), a_1 , a_2$ are real, $qin l...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملInverse Spectral Theory for Sturm-liouville Problems with Finite Spectrum
For any positive integer n and any given n distinct real numbers we construct a Sturm-Liouville problem whose spectrum is precisely the given set of n numbers. Such problems are of Atkinson type in the sense that the weight function or the reciprocal of the leading coefficient is identically zero on at least one subinterval.
متن کاملA convergent approximation scheme for the inverse Sturm-Liouville problem?
For the Sturm-Liouville operator L =L,: .VP+ -p” +pv one seeks to reconstruct the coefficient p from knowledge of the sequence of eigen-frequencies (Aj with LJ? =Ajn for some y j # 0). An implementable scheme is: for some N determine pnr so (approximately) pN has minimum norm with eigen-frequencies { A , . . . . .IN/ as given. This is the method ot’ ’generalised interpolation‘ and is shown to g...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 41
شماره 4 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023